Том 6, №1, 2014
РусскийEnglish

НАНОСИСТЕМЫ



ГРАФЕН И МАТЕРИАЛЫ НА ЕГО ОСНОВЕ
Губин С. П., Ткачев С. В.

Институт общей и неорганической химии им. Н.С. Курнакова, Российская академия наук, http://www.igic-ras.ru
31, Ленинский просп., 117901 Москва, Российская Федерация,
+7 495 954 7136, gubin@igic-ras.ru


Представлен обзор литературы последних 3-х лет из ведущих журналов с высокими импакт-факторами, за исключением отечественных – до конца 2009 года пустых по графену. В шквале публикаций на заявленную тему выявлено главное, определено место объекта среди других наноматериалов и круг перспективных материалов на основе графена с методами их получения. Определённое внимание уделелено терминологии в данной бурно развивающейся области. Отбор информации отражает интересы авторов – специалистов в области химии и технологии наночастиц и материалов на их основе.

Ключевые слова: углерод, графит, графитизация, наночастицы, графен.

УДК 547.022.1/.4

Библиография – 184 ссылки
Поступила в редакцию 10.10.2010

РЭНСИТ, 2010, 2(1-2):99-137

ЛИТЕРАТУРА
  • Dresselhaus MS, Araujo PT. Perspectives on the 2010 Nobel Prize in Physics for Graphene. ASC Nano, 2010, 4(11):6297-6302.
  • Фиалков АС. Углерод, межслоевые соединения и композиты на его основе. М., Аспект Пресс, 1997.
  • Убеллоде АР, Льюис ФА. Графит и его кристаллические соединения. М., Мир, 1965.
  • Chung DDL. Review graphite. J. of Mater. Sci., 2002, 37:1475-1489.
  • Химическая энциклопедия. Кнунянц И.Л. (ред.). М., Сов. энцикл., 1998.
  • Энциклопедия «Современное естествознание». Сойфер В.Н. (ред.). М., Изд. дом Магистр-Пресс, 2002.
  • Selig H, Ebert LB. Graphite intercalation compounds. Adv.Inorg.Chem. Radiochem., 1980, 23:281-327.
  • Enoki T, Suzuki M, Endo M. Graphite intercalation compounds and applications. Oxford, University Press, 1930, 433.
  • Черныш ИГ, Карпов ИИ, Приходько ВП, Шай ВМ. Физико-химические свойства графита и его со-единений. Киев, Наукова Думка, 1990.
  • Lopez-Gonzalez J, Martin-Rodriguez A, Rodríguez-Reinoso F. Kinetics of the formation of Graphite oxide. Carbon, 1975, 13(6):461-464.
  • Hontoria-Lycas C, Lopez-Peinado AJ, De Lopez-Gonzalez JD, Rojas-Cervantes ML, Martin-Avanda RM. Study of oxygen-containing groups in series of graphite oxides: physical and chemical characterization. Carbon, 1995, 33(11):1585-1592.
  • Herold A, Furdin G, Guerard D, Hachim L, Nadi NE, Vangelisti R. Some aspects of graphite intercalation compounds. Annales de Physique, 1986, 11(2):3-11.
  • Henning GR. Interstital compounds of graphite. Progr. In Inorg. Chem., 1959, 1:125-205.
  • Ebert LB. Intercalation compounds of graphite. Ann. Rev. Mater. Sci., 1976, 6:181-211.
  • Dzurus NL, Hennig GR. Graphite compounds. J.Am.Chem.Soc., 1957, 79:1051-1054.
  • Мetrot A, Fischer JE. Charge transfer reactions during anodic oxidation of graphite in H2SO4. Synt. Met., 1981, 3(3):201-207.
  • Aronson S, Lemont S, Weiner J. Determination of the H2SO4:HSO4- and HC1O4:C1O4- ratios in graphite lamellar compounds. Inorg. Chem., 1971, 10(6):1296-1298.
  • Julietti RJ, Riley DL. Determination of chlorine and sulphur in small samples of carbon and graphite. Proc. 2th Conference on Industrial Carbon and Graphite. London, Soc. Chem. Ind., 1966:86-89.
  • Iskander В, Vast P. Etude par spectrometrie raman du materiau obtenu par trtion de Facide sulfurique dans le graphite. J. Ram. Spectros., 1981, 11(4):247-251.
  • Авдеев ВВ, Сорокина НЕ, Тверезовская ОА, Мартынов ИЮ, Сеземин АВ. Синтез соединений вне-дрения с HNO3. Вестн. Моск. Ун-та, 1999, 40(6):422-425.
  • Inagaki M. Graphite-nitrate residue compound with a smaller interlayer spacing than graphite. Carbon, 1967, 5(3):317-318.
  • Savoskin M, Jaroshenko A. New kinetic model for graphite nitrate hydrolyses. Proc. 9th Intern. Symposium on Intercalation Compounds ISIC-9, 1967, 1:19.
  • Bottomley MJ, Parry GS, Ubbelohde AR. Thermal expansion of some salts of graphite. Proc. Roy. Soc. (London), 1964, 279(1378):291-301.
  • Inagaki M, Suwa T. Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs. Carbon, 2001, 39:915-920.
  • Kang F, Zheng Y-P, Wang H-N, Nishi Y, Inagaki M. Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon, 2002, 40(9):1575-1581.
  • Celzard A, Schneider S, Mareche JF. Densification of expanded graphite. Carbon, 2002, 40(12):2185-2191.
  • Toyoda M, Inagaki M. Heavy oil sorption using exfoliated graphite. New application of exfoliated graphite to protect heavy oil pollution. Carbon, 2000, 38(2):199-210.
  • Chen X, Song K, Li J, Liv J. Preparation of lower-sulfur content and expandable graphite. Carbon, 1996, 34(12):1599-1603.
  • Третьяков ЮД, Мартыненко ЛИ, Григорьев АН, Цивадзе АЮ. Неорганическая химия. Химия Элементов. Книга II. М., Химия, 2001.
  • Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee S-T. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew.Chem. Int. Ed., 2010, 49(26):4430-4434.
  • Jiang H, Chen F, Lagally MG, Denes FS. New Strategy for Synthesis and Functionalization of Carbon Nanoparticles. Langmuir, 2010, 26(3):1991-1995.
  • Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc., 2006, 128(24):7756-7757.
  • Wang F, Pang S, Wang L, Li Q, Kreiter M, Liu C-Y. One-Step Synthesis of Highly Luminescent Carbon Dots in Noncoordinating Solvents. Chem. Mater., 2010, 22(16):4528-4530.
  • Avouris P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett., 2010, 10(11):4285-4294.
  • Wang Sh, Tang LA, Bao Q, Lin M, Deng S, Goh BM, Loh KP. Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nano-sheets. J. Am. Chem. Soc., 2009, 131:16832-16837.
  • Lui CH, Liu L, Mak KF, Flynn GW, Heinz TF. Ultraflat graphene. Nature, 2009, 462:339-341.
  • Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM, Son H, Hsieh Y-P, Reina A, Kong J, Terrones M, Dresselhaus MS. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science, 2009, 323:1701-1705.
  • Girit ÇÖ, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park C-H, Crommie MF, Cohen ML, Louie SG, Zettl A. Graphene at the Edge: Stability and Dynamics. Science, 2009, 323(5922):1705-1708.
  • Terrones M. Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons. ACS Nano, 2010, 4(4):1775-1781.
  • Joshi RK, Gomez H, Alvi F, Kumar A. Graphen films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions. J. Phys. Chem. C, 2010, 114:6610-6613.
  • Ткачев СВ, Буслаева ЕЮ, Губин СП. Графен – новый углеродный наноматериал. Неорганические мате-риалы, 2011, 47(1):5-14.
  • Nourbakhsh A, Cantoro M, Klekachev A, Clemente F, Sore B, Veen MH van der, Vosch T, Stesmans A, Sels B, De Gendt S. Tuning the Fermi Level of SiO2-Supported Single-Layer Graphene by Thermal Annealing. J. Phys. Chem. C, 2010, 114:6894-6900.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306(5696):666-669.
  • Novoselov KS, Jiang D, Schedin F, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. PNAS, 2005, 102(30):10451-10453.
  • Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech., 2008, 3(9):563-568.
  • An X, Simmons T, Shah R, Wolfe Ch, Lewis KM, Washington M, Nayak SK, Talapatra S, Ka S. Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications. Nano Lett., 2010, 10(11):4295-4301.
  • Yang H, Mayne AJ, Boucherit M, Comtet G, Dujardin G, Kuk Y. Quantum Interference Channeling at Graphene Edges. Nano Lett., 2010, 10(3):943-947.
  • Lu J, Yang J, Wang J, Lim A, Wang S, Loh KP. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphitein Ionic Liquids. ACS NANO, 2009, 3(8):2367-2375.
  • Eizenberg M, Blakely JM. Carbon monolayer phase condensation on Ni(111). Surf. Sci., 1979, 82(1):228-236.
  • Aizawa T, Souda R, Otani S, Ishizawa Y, Oshima C. Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys. Rev. Lett., 1990, 64(7):768-771.
  • Tontegode AY. Carbon on transition metal surfaces. Progr. Surf. Sci., 1991, 38(3-4):201-429.
  • Gall NR, Rut’kov EV, Tontegoge AY. Two Dimensional Graphite Films on Metals and Their Intercalation. Int. J. modern Phys. B, 1997, 11(16):1865-1911.
  • Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH. Large-scale pattern growth of graphene films for stretchable trans-parent electrodes. Nature, 2009, 457(7230):706-710.
  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 2009, 9(1):30-35.
  • Lee Y, Bae S, Jang H, Jang S. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Lett., 2010, 10(2):490-493.
  • Li X, Cai W, Colombo L, Ruoff RS. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett., 2009, 9(12):4268-4272.
  • Cai W, Zhu Y, Li X, Piner RD, Ruoff RS. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett., 2009, 95(12):123115-3.
  • Gao J-H, Fujita D, Xu M-S, Onishi K, Miyamoto S. Unique Synthesis of Few-Layer Graphene Films on Carbon-Doped Pt83Rh17 Surfaces. ACS Nano, 2010, 4(2):1026-1032.
  • Sutter PW, Flege JI, Sutter EA. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7(5):406-411.
  • Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Lett., 2010, 10:1542-1548.
  • Yakes MK, Gunlycke D, Tedesco JL, Campbell PM, Myers-Ward RL, Eddy CR, Gaskill DK, Sheehan PE, Laracuente AR. Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions. Nano Lett., 2010, 10(5):1559-1562.
  • Robinson J, Weng X, Trumbull K, Cavalero R, Wetherington M, Frantz E, LaBella M, Hughes Z, Fanton M, Snyder D. Nucleation of Epitaxial Graphene on SiC(0001). ACS Nano, 2010, 4(1):153-158.
  • Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic Confinement and Coherence in Pattened Epitaxial Graphen. Science, 2006, 312(5777):1191-1196.
  • Hass J, Varchon F, Millán-Otoya J, Sprinkle M, Sharma N, Heer WD, Berger C, First P, Magaud L, Conrad E. Why Multilayer Graphene on 4H-SiC (000-1) Behaves Like a Single Sheet of Graphene. Phys. Rev. Lett., 2008, 100(12):125504-4.
  • Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater., 2009, 8:203-207.
  • Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, Mammana VP. Free-standing subnanome-ter graphite sheets. Appl. Phys. Lett., 2004, 85(7):1265-1267.
  • Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett., 2008, 8(7):2012-2016.
  • Campos-Delgado J, Romo-Herrera JM, Jia X, Cullen DA, Muramatsu H, Kim YA, Hayashi T, Ren Z, Smith DJ, Okuno Y, Ohba T, Kanoh H, Kaneko K, Endo M, Terrones H, Dresselhaus MS, Terrones M. Bulk produc-tion of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett., 2008, 8(9):2773-2778.
  • Liu N, Luo F, Wu HX, Liu YH, Zhang Ch, Chen J. One-step ionic-liquid-assisted electro-chemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater., 2008, 18(10):1518-1525.
  • Vall C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Penicaud A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc., 2008, 130(47):15802-15804.
  • Li X, Wang X, Zhang L, Lee S, Daio H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867):1229-1232.
  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech., 2008, 3(9):538-542.
  • Hao R, Qian W, Zhang L, Hou Y. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun., 2008, 48:6576-6578.
  • Worsley KA, Ramesh P, Mandal SK, Sandip N, Itkis ME, Haddon R. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett., 2007, 445(1-3):51-56.
  • Choucair M, Thordarson P, Stride JA. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotech., 2009, 4(1):30-33.
  • Terrones M. Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons. ACS Nano, 2010, 4(4):1775-1781.
  • Kim WS, Moon SY, Bang SY, Choi BG, Ham H, Sekino T, Shim KB. Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl. Phys. Lett., 2009, 95(8):83-103.
  • Kim K, Sussman A, Zettl A. Graphene Nanoribbons Obtained by Electrically Unwrapping Carbon Nanotubes. ACS Nano, 2010, 4(3):1362-1366.
  • Brodie BC. Sur le poids atomique du graphite. Ann. Chim. Phys., 1860, 59:466-472.
  • Staudenmaier L. Verfahren zur Darstellung der Graphits-aure. Ber. Deut. Chem. Ges., 1898, 31:1481-1499.
  • Hummers WS, Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6):1339-1339.
  • Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M. Atomic and Electronic Structure of Graphene-Oxide. NanoLett., 2009, 9(3):1058-1063.
  • Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez J de D., Rojas-Cervantes ML, Martin-Aranda RM. Study of oxygen-containing groups in series of graphite oxides: physical and chemical characterization. Carbon, 1995, 33(11):1585-1592.
  • Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater., 2006, 18(11):2740-2749.
  • Park S, Lee K-S, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified by divalent ions – Enhancing mechanical properties via chemical cross-linking. ACS Nano, 2008, 2(3):572-578.
  • Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem., 2006, 16(2):155-158.
  • Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006, 44(15):3342-3347.
  • Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24(19):10560-10564.
  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleihammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7):1558-1565.
  • Lomeda JR, Doyle CD, Kosynkin DV, Hwang W-F, Tour JM. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc., 2008, 130(48):16201-16206.
  • Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale grapheme. Nature Nanotech., 2008, 4(1):25-29.
  • Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nano-sheets. J. Phys. Chem. C, 2008, 112(22):8192-8195.
  • Murugan AV, Muraliganth T, Manthiram A. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nano-sheets and Their Polyaniline Nanocomposites for Energy Strorage. Chem. Mater., 2009, 21(21):5004-5006.
  • Zangmeister ChD. Preparation and Evaluation of Graphite Oxide Reduced at 2200C. Chem. Mater., 2010, 22(19):5625-5629.
  • Lin Y, Yao J, Li Zh, Liu Y, Li Zh, Wong Ch-P. Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C, 2010, 114(35):14819-14825.
  • Si Y, Samulski ET. Synthesis of water soluble grapheme. Nano Lett., 2008, 8(6):1679-1682.
  • Williams G, Serger B, Kamat PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(8):1487-1491.
  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech., 2008, 3(2):101-105.
  • Xu Y, Bai H, Lu G, Li Ch Shi G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc., 2008, 130(18):5856-5857.
  • Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen SBT, Ruoff RS. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater., 2008, 20(21):6592-6594.
  • Muszynski R, Seger B, Kamat PV. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C, 2008, 112(14):5263-5266.
  • Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B, 2006, 110(17):8535-8539.
  • McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionali-zed graphene by oxidation and thermal expansion of graphite. Chem. Mater., 2007, 19(18):4396-4404.
  • Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'Homme RK, Brinson LC. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotech., 2008, 3(6):327-331.
  • Yang Q, Pan X, Huang F, Li K. Fabrication of High-Concentration and Stable Aqueous Suspensions of Graphene Nanosheets by Noncovalent Functionalization with Lignin and Cellulose Derivatives. J. Phys. Chem. C, 2010, 114(9):3811-3816.
  • Gao J, Liu F, Liu Y, Ma N, Wang Zh, Zhang X. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater., 2010, 22(7):2213-2218.
  • Boehm HP, Eckel M, Scholz W. Über den Bildungsmechanismus des Graphitoxids. Anorg. Allg. Chem., 1967, 353:236-242.
  • Gomez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Atomic Structure of Reduced Graphene Oxide. Nano Lett., 2010, 10(4):1144-1148.
  • Paredes JI, Villar-Rodil S, Solıs-Fernandez P, Martınez-Alonso A, Tascon JMD. Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir, 2009, 25(10):5957-5968.
  • Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Li Zh Jiao. Storage Properties of Disordered Graphene Nanosheets. Chem. Mater., 2009, 21(14):3136-3142.
  • Gómez-Navarro C, Burghard M, Kern K. Elastic Properties of Chemically Derived Single Graphene Sheets. Nano Lett., 2008, 8(7):2045-2049.
  • Kundhikanjana W, Lai K, Wang H, Dai H, Kelly MA, Shen Z. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging. Nano Lett., 2009, 9(11):3762-3765.
  • Kamegawa T, Yamahana D, Yamashita H. Graphene Coating of TiO2 Nanoparticles Loaded on Mesoporous Silica for Enhancement of Photocatalytic Activity. J. Phys. Chem. C, 2010, 114(35):15049-15053.
  • Gao L, Ren W, Li F, Cheng HM. Total Color Difference for Rapid and Accurate Identification of Graphene. ACS Nano, 2008, 2(8):1625-1633.
  • Treossi E, Melucci M, Liscio A, Gazzano M, Samori P, Palermo V. High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. J. Am. Chem. Soc., 2009, 131(43):15576-15577.
  • Gokus T, Nair RR, Bonetti A, Bohmler M, Lombardo A, Novoselov KS, Geim AK, Ferrari AC, Hartschuh A. Making Graphene Luminescent by Oxygen Plasma Treatment. ACSNano, 2009, 3(12):3963-3968.
  • Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron-photon coupling, doping and nonadiabatic effects. Solid state comm., 2007, 143(1-2):47-57.
  • Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman Spectra of graphene and graphene layers. Phys. Rev. Lett., 2006, 97(18):187401-4.
  • Chen CC, Bao W, Theiss J, Dames C, Lau CN, Cronin SB. Raman spectroscopy of ripple formation in suspended grapheme. Nano Lett., 2009, 9(12):4172-4176.
  • Obraztsova EA, Osadchy AV, Obraztsova ED, Lefrant S, Yaminsky IV. Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers. Phys. stat. sol. B, 2008, 245(10):2055-2059.
  • Stolyarova E, Rim KT, Ryu S, Maultzsch J, Kim P, Brus LE, Heinz TF, Hybertsen MS, Flynn GW. High resolution scanning tunneling mesoscopic imaging of graphene sheets on an insulating surface. PNAS, 2007, 104(22):9209-9212.
  • Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R. Raman spectra of graphene oxide and functionalized graphene sheets. Nano Lett., 2008, 8(1):36-41.
  • Katsnelson MI. Just Add Water. Science, 2010, 329(5996):1157-1158.
  • Xu K, Cao P, Heath JR. Graphene Visualizes the First Water Adlayers on Mica at Ambient Conditions. Science, 2010, 329(5996):1188-1191.
  • Geim AK, Novoselov KS. The Rise of Graphen. Nature Materials, 2007, 6(3):183-191.
  • Химическая энциклопедия. Кнунянц И.Л. (ред.). М., Большая Рос. Энцикл., т.2, 1990.
  • Wang S, Ang K., Wang Z., Tang ALL, Thong JTL, Loh KP. High Mobility, Printable and Solution-Processed Graphene Electronics. Nano Lett., 2010, 10:92-98.
  • Du X, Skachko I, Duerr F, Luican A, Andrei EY. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature, 2009, 462:192-195.
  • Bolotin KI, Ghahari F, Shulman MD, Stormer HL, Kim P. Observation of the fractional quantum Hall effect in graphene. Nature, 2009, 462:196-199.
  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., 2008, 8(3):902-907.
  • Faugeras C, Faugeras B, Orlita M, Potemski M, Nair RR, Geim AK. Thermal Conductivity of Graphene in Corbino Membrane Geometry. ACS Nano, 2010, 4(4):1889-1892.
  • Koh YK, Bae M-H, Cahill DG, Pop E. Heat Conduction across Monolayer and Few-Layer Graphenes. Nano Lett., 2010, 10(11):4363-4368.
  • Bunch JS, Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical Resonators from Graphene Sheets. Science, 2007, 315(5811):490-493.
  • Suk JW, Piner RD, An J, Ruoff RS. Mechanical Properties of Monolayer Graphene Oxide. ACS Nano, 2010, 4(11):6557-6564.
  • Huang L, Hartland GV, Chu L-Q, Luxmi, Feenstra RM, Lian C, Tahy K, Xing H. Ultrafast Transient Absorption Microscopy Studies of Carrier Dynamics in Epitaxial Graphene. Nano Lett., 2010, 10(4):1308-1313.
  • Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended grapheme. Solid State Commun., 2008, 146:351-355.
  • Su Ch-Y, Xu Y, Zhang W, Zhao J, Tang X, Tsai Ch-H, Li L-J. Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chem. Mater., 2009, 21(23):5674-5680.
  • Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W.A, Lanzara A, Conrad EH. First Direct Observation of a Nearly Ideal Graphene Band Structure. PRL, 2009, 103(22):226803-4.
  • Kim K, Park HJ, Woo B-C, Kim KJ, Kim GT, Yun WS. Electric Property Evolution of Structurally Defected Multilayer Graphene. Nano Lett., 2008, 8(10):3092-3096.
  • Lin Y-M, Avouris P. Strong Suppression of Electrical Noise in Bilayer Graphene Nanodevices. Nano Lett., 2008, 8(8):2119-2125.
  • Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nature Nanotech., 2009, 4:383-388.
  • Zhou H, Qiu C, Liu Zh, Yang H, Hu L, Liu J, Yang H, Gu Ch, Sun L. Thickness-Dependent Morphologies of Gold on N-Layer Graphenes. J. Am. Chem. Soc., 2010, 132(3):944-946.
  • Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW. Graphene Oxidation: Thickness-Dependent Etching and Strong Chemical Doping. Nano Lett., 2008, 8(7):1965-1970.
  • Xu Y, Zhao L, Bai H, Hong W, Li Ch, Shi G. Chemically Converted Graphene Induced Molecular Flatteningof 5, 10, 15, 20 - Tetrakis (1-methyl-4-pyridinio) porphyrin and Its Application for Optical Detection of Cadmium(II) Ions. J. Am. Chem. Soc., 2009, 131(37):13490-13497.
  • Chunder A, Pal T, Khondaker SI, Zhai L. Reduced Graphene Oxide/Copper Phthalocyanine Composite and Its Optoelectrical Properties. J. Phys. Chem. C, 2010, 114(35):15129-15135.
  • Choi J, Lee H, Kim K-J, Kim B, Kim S. Chemical Doping of Epitaxial Graphene by Organic Free Radicals. J. Phys. Chem. Lett., 2010, 1(2):505-509.
  • Margine ER, Bocquet M-L, Blasé X. Thermal Stability of Graphene and Nanotube Covalent Functionalization. Nano Lett., 2008, 8(10):3315-3319.
  • Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR. High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett., 2009, 9(10):3460-3462.
  • Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tou JM. Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACS Nano, 2010, 4(4):1949-1954.
  • Niyogi S, Bekyarova E, Itkis ME, Zhang H, Shepperd K, Hicks J, Sprinkle M, Berger C, Lau ChN, de Heer WA, Conrad EH, Haddon RC. Spectroscopy of Covalently Functionalized Graphene. Nano Lett., 2010, 10(10):4061-4066.
  • Sharma R, Baik JH, Perera CJ, Strano MS. Anomalously Large Reactivity of Single Graphene Layers and Edges toward Electron Transfer Chemistries. Nano Lett., 2010, 10(2):398-405.
  • Wassmann GT, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F. Clar’s Theory, π-Electron Distribution, and Geometry of Graphene Nanoribbons. J. Am. Chem. Soc., 2010, 132(10):3440-3451.
  • Zhu Y, Higginbotham AL, Tour JM. Covalent Functionalization of Surfactant-Wrapped Graphene Nanoribbons. Chem. Mater., 2009, 21(21):5284-5291.
  • Jahan M, Bao Q, Yang J-X, Loh KP. Structure-Directing Role of Graphene in the Synthesis of Metal-Organic Framework Nanowire. J. Am. Chem. Soc., 2010, 132(41):14487-14495.
  • Elias DD, Nair RR, Mohiuddin TM, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 2009, 323(5914):610-613.
  • Balog R, Jørgensen B, Wells J, Lægsgaard E, Hofmann P, Besenbacher F, Hornekær L. Atomic Hydrogen Adsorbate Structures on Graphene. J. Am. Chem. Soc., 2009, 131(25):8744-8745.
  • Matsumoto Y, Morita M, Kim SY, Watanabe Y, Koinuma M, Ida Sh. Photoreduction of Graphene Oxide Nanosheet by UV-light Illumination under H2. Chem. Lett., 2010, 39(7):750-752.
  • Bon SB, Valentini L, Verdejo R, Fierro JLG, Peponi L, Lopez-Manchado MA, Kenny JM. Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification With Butylamine. Chem. Mater., 2009, 21(14):3433-3438.
  • Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES. Properties of Fluorinated Graphene Films. Nano Lett., 2010, 10(8):3001-3005.
  • Kim P, Bru L. Charge Transfer Chemical Doping of Few Layer Graphenes: Charge Distribution and Band Gap Formation. Nano Lett., 2009, 9(12):4133-4137.
  • Fort EH, Donovan PM, Scott LT. Diels-Alder Reactivity of Polycyclic Aromatic Hydrocarbon Bay Regions: Implications for Metal-Free Growth of Single-Chirality Carbon Nanotubes. J. Am. Chem. Soc., 2009, 131(44):16006-16007.
  • Liu J, Wang Y, Xu Sh, Sun DD. Synthesis of graphene soluble in organic solvents by simultaneous ether-functionalization with octadecane groups and reduction. Materials Letters, 2010, 64(20):2236-2239.
  • He H, Gao Ch. General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry. Chem. Mater., 2010, 22(17):5054-5064.
  • Cui Y, Kim SN, Jones ShE, Wissler LL, Naik RR, McAlpine MC. Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides. Nano Lett., 2010, 10:4559-4565.
  • Hou Sh, Kasner ML, Su Sh, Patel K, Cuellari R. Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene. J. Phys. Chem. C, 2010, 114(35):14915-14921.
  • Lin Z, Liu Y, Wong Ch-P. Facile Fabrication of Superhydrophobic Octadecylamine-Functionali-zed Graphite Oxide Film. Langmuir, 2010, 26(20):16110-16114.
  • Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN. Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir, 2010, 26(5):3208-3213.
  • Shih Ch-J, Lin Sh, Strano MS, Blankschtein D. Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvents: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation. J. Am. Chem. Soc., 2010, 132(41):14638-14648.
  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on grapheme. Nat. Mater., 2007, 6(9):652-655.
  • Akhavan O, Ghaderi E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano, 2010, 4(10):5731-5636.
  • Warner JH, Rummeli MH, Bachmatiuk A, Wilson M, Buchner B. Examining Co-Based Nanocrystals on Graphene Using Low-Voltage Aberration- Corrected Transmission Electron Microscopy. ACS Nano, 2010, 4(1):470-476.
  • Wang H, Robinson JT, Diankov G, Dai H. Nanocrystal Growth on Graphene with Various Degrees of Oxidation. J. Am. Chem. Soc., 2010, 132(10):3270-3271.
  • Kamat PV. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. J. Phys. Chem. Lett., 2010, 1(2):520-527.
  • Guo S, Dong S, Wang E. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano, 2010, 4(1):547-555.
  • Cuong TV, Pham VH, Chung JS, Shin EW, Yoo DH, Hahn SH, Huh JS, Rue GH, Kim EJ, Hur SH, Kohl PA. Solution-processed ZnO-chemically converted graphene gas sensor. Materials Letters, 2010, 64(22):2479-2482.
  • Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett., 2009, 9(4):1593-1597.
  • Tang Y, Gou J. Synergistic effect on electrical conduc-tivity of few-layer graphene/multi-walled carbon nanotube paper. Materials Letters, 2010, 64(22):2513-2516.
  • Lee V, Whittaker L, Jaye Ch, Baroudi KM, Fischer DA, Banerjee S. Large-Area Chemically Modified Graphene Films: Electrophoretic Deposition and Characterization by Soft X-ray Absorption Spectroscopy. Chem. Mater., 2009, 21(16):3905-3916.
  • Zhao X, Zhang Q, Chen D. Enhanced Mechanical Properties of Graphene-Based poly(vinyl alcohol) Composites. Macromolecules, 2010, 43(12):2357-2363.
  • Rafiee MA, Rafiee J, Wang Zh, Song H, Yu Zh-Zh, Koratkar N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano, 2009, 3(12):3884-3890.
  • Li Zh, Cheng Z, Wang R, Li Q, Fang Y. Spontaneous Formation of Nanostructures in Graphene. Nano Lett., 2009, 9(10):3599-3602.
  • Wu Q, Xu Y, Yao Zh, Liu A, Shi G. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano, 2010, 4(4):1963-1970.
  • Zhang K, Zhang L, Zhao XS, Wu J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater., 2010, 22(4):1392-1401.
  • Yu D, Dai L. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. J. Phys. Chem. Lett., 2010, 1(2):467-470.


Полнотекстовая электронная версия статьи – на вебсайте http://elibrary.ru