Том 8, №2, 2016
РусскийEnglish

НАНОСИСТЕМЫ



ДВУХСЛОЙНЫЙ ГРАФЕН КАК МЕМБРАНОМИМЕТИК: МОДЕЛИРОВАНИЕ ИОННЫХ КАНАЛОВ

1Градов О.В., 1,2Градова М.А


1Институт энергетических проблем химической физики им. В.Л. Тальрозе РАН, http://www.inepcp.ru
117829 Москва, Российская Федерация
2Институт химической физики им. Н.Н. Семенова РАН, http://www.chph.ras.ru
119991 Москва, Российская Федерация
gradov@chph.ras.ru, gradova@chph.ras.ru
Представлена действительным членом РАЕН С.П. Губиным

Поступила в редакцию 14.11.2016


Аннотация. Перспективы использования графена и родственных ему структур в качестве мембраномиметических материалов, до определенных пределов имитирующих функции биологических мембран, анализируются в представленном цикле работ. В настоящей работе рассматривается возможность моделирования функций ионных каналов на базе графена и ряда его производных. Обсуждаются физические механизмы избирательной проницаемости для различных мембраномиметиков, а также границы адекватного моделирования транспортных, каталитических, сенсорных и электрогенных свойств ионных каналов на основе двухслойных графеновых структур.

Ключевые слова: ионные каналы, графен, миметики каналов, нанопоры, капиллярная химия, EDLC, ионоселективные и химические полевые транзисторы

PACS: 81.05.ue

Библиография – 171 ссылка

РЭНСИТ, 2016, 8(2):154-170 DOI: 10.17725/rensit.2016.08.154
ЛИТЕРАТУРА
  • Градов ОВ. Мембранные модели и анзац двухслойного графена как мембраномиметика. Радиоэлектроника. Наносистемы. Информационные технологиии (РЭНСИТ), 2016, 8(1):25-38; DOI: 10.17725/rensit.2016.08.025.
  • Huang L, Li Y, Zhou Q, Yuan W, Shi G. Graphene Oxide Membranes with Tunable Semipermeability in Organic Solvents. Adv Mater., 2015, 27(25):3797-3802.
  • Courtney KR. Sodium channel blockers: the size/solubility hypothesis revisited. Mol. Pharmacol., 1990, 37(6):855-859.
  • Courtney KR. Size-dependent kinetics associated with drug block of sodium current. Biophys. J., 1984, 45(1):42-44.
  • Courtney KR. Quantitative structure/activity relations based on use-dependent block and repriming kinetics in myocardium. J. Mol. Cell Cardiol., 1987, 19(3):319-330.
  • Le Novère N, Changeux JP. The Ligand Gated Ion Channel database: an example of a sequence database in neuroscience. Philos. Trans. R. Soc. Lond. B: Biol Sci., 2001, 356(1412):1121-1130.
  • Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH. Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem. Biophys. Res. Commun., 2009, 385(2):181-186.
  • Cruickshank CC, Minchin RF, Le Dain AC, Martinac B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J., 1997, 73(4):1925-1931.
  • Lev AA, Korchev YE, Rostovtseva TK, Bashford CL, Edmonds DT, Pasternak CA. Rapid switching of ion current in narrow pores: implications for biological ion channels. Proc. Biol. Sci., 1993, 252(1335):187-192.
  • Korchev YE, Bashford CL, Alder GM, Apel PY, Edmonds DT, Lev AA, Nandi K, Zima AV, Pasternak CA. A novel explanation for fluctuations of ion current through narrow pores. FASEB J., 1997, 11(7):600-608.
  • Osterhout WJ. Nature of the action current in nitella: V. Partial response and the all-or-none law. J. Gen. Physiol., 1943, 27(1):61-68.
  • Osterhout WJ. Apparent violations of the all-or-none law in relation to potassium in the protoplasm. J. Gen. Physiol., 1954, 37(6):813-824.
  • Steinle ED, Mitchell DT, Wirtz M, Lee SB, Young VY, Martin CR. Ion channel mimetic micropore and nanotube membrane sensors. Anal. Chem., 2002, 74(10):2416-2422.
  • Guo W1, Tian Y, Jiang L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc. Chem. Res., 2013, 46(12):2834-2846.
  • Wirtz M, Martin CR. Nanotube Membrane Sensors: Resistive Sensing and Ion Channel Mimetics. Sens. Upd., 2002, 11(1):35-64.
  • Korchev YE, Bashford CL, Alder GM, Kasianowicz JJ, Pasternak CA. Low conductance states of a single ion channel are not 'closed'. J. Membr. Biol., 1995, 147(3):233-239.
  • Flory PJ. Molecular morphology in amorphous and glass polymers. Journ. Non-Crystal. Sol., 1980, 42(1–3):117.
  • Flory PJ, De Yeung Y. Molecular morphology in semicrystalline polymers. Nature, 1978, 272:226-229.
  • Freundlich Н. Kapillarchemie; eine Darstellung der Chemie der kolloide und verwandter Gebiete, Band 1. Leipzig, Akademische Verlagsgesellschaft, 1930, 566 p.
  • Freundlich H. Colloid & capillary chemistry. New York, E.P. Dutton & Company, 1922, 883 p.
  • Freundlich H. Kapillarchemie und Physiologie. Dresden, Theodor Stienkopff, 1914, 48 p.
  • Freundlich H. Die Adsorption in Lösungen. Z. Phys. Chem., 1906, 57(A):385-470.
  • Plant SR, Cao L, Yin F, Wang ZW, Palmer RE. Size-dependent propagation of Au nanoclusters through few-layer graphene. Nanoscale, 2014, 6(3):1258-1263.
  • Jeon KJ, Lee Z. Size-dependent interaction of Au nanoparticles and graphene sheet. Chem. Commun., 2011, 47(12):3610-3612.
  • Si C, Zhou G. Size-dependent chemical reactivity of porous graphene for purification of exhaust gases. J. Chem. Phys., 2012, 137(18):184309-1 -184309-6.
  • Zhang B, Fan L, Zhong H, Liu Y, Chen S. Graphene nanoelectrodes: fabrication and size-dependent electrochemistry. J. Am. Chem. Soc., 2013, 135(27):10073-10080.
  • Cardoso RM, Montes RH, Lima AP, Dornellas RM, Nossol E, Richter EM, Munoz RA. Multi-walled carbon nanotubes: Size-dependent electrochemistry of phenolic compounds. Electrochim. Acta, 2015, 176:36-43.
  • Tran MH, Yang CS, Yang S, Kim IJ, Jeong HK. Size dependent electrochemical properties of reduced graphite oxide. Chem. Phys. Lett., 2014, 608:207-212.
  • Hantel MM, Kaspar T, Nesper R, Wokaun A, Kötz R. Partially reduced graphite oxide as an electrode material for electrochemical double-layer capacitors. Chemistry, 2012, 18(29):9125-9136.
  • Rao S, Lu S, Guo Z, Li Y, Chen D, Xiang Y. A light-powered bio-capacitor with nanochannel modulation. Adv. Mater., 2014, 26(33):5846-5850.
  • Lamport DT, Varnai P, Seal CE. Back to the future with the AGP-Ca2+ flux capacitor. Ann. Bot., 2014, 114(6):1069-1085.
  • Kim I, Warshel A. A Microscopic Capacitor Model of Voltage Coupling in Membrane Proteins: Gating Charge Fluctuations in Ci-VSD. J. Phys. Chem. B., 2016, 120(3):418-432.
  • Ray S, Kassan A, Busija AR, Rangamani P, Patel HH. The plasma membrane as a capacitor for energy and metabolism. Am. J. Physiol. Cell Physiol., 2016, 310(3):C181-C192.
  • Gimsa J, Wachner D. A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys. J., 1998, 75(2):1107-1116.
  • Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc., 2008, 130(9):2730-2731.
  • Lobato B, Vretenár V, Kotrusz P, Hulman M, Centeno TA. Reduced graphite oxide in supercapacitor electrodes. J. Coll. Interf. Sci., 2015, 446:203-207.
  • Kannan PK, Moshkalev SA, Rout CS. Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphenenanobelts. Nanotechn., 2016, 27(7):075504-1 – 075504-9.
  • Qian T, Yu C, Wu S, Shen J. Gold nanoparticles coated polystyrene/reduced graphite oxide microspheres with improved dispersibility and electrical conductivity for dopamine detection. Coll. Surf. B: Biointerfaces, 2013, 112:310-314.
  • Qian T, Wu S, Shen J. Facilely prepared polypyrrole-reduced graphite oxide core-shell microspheres with high dispersibility for electrochemical detection of dopamine. Chem. Commun., 2013, 49(41):4610-4612.
  • Feng X, Zhang Y, Zhou J, Li Y, Chen S, Zhang L, Ma Y, Wang L, Yan X. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale, 2015, 7(6):2427-2432.
  • Bagherzadeh M, Heydari M. Electrochemical detection of dopamine based on pre-concentration by graphene nanosheets. Analyst, 2013, 138(20):6044-6051.
  • Cheemalapati S, Palanisamy S, Mani V, Chen SM. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta, 2013, 117:297-304.
  • Munz M, Giusca CE, Myers-Ward RL, Gaskill DK, Kazakova O. Thickness-Dependent Hydrophobicity of Epitaxial Graphene. ACS Nano., 2015, 9(8):8401-8411.
  • Schneider GF, Xu Q, Hage S, Luik S, Spoor JN, Malladi S, Zandbergen H, Dekker C. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nat. Commun., 2013, 4:2619.
  • Martin-Moe SA, Lehr R, Cauley MD, Moe GR. Hydrophobic interactions and the design of receptor mimetic peptides. Pept. Res., 1995, 8(2):70-76.
  • Wang X, You Z, Sha H, Cheng Y, Zhu H, Sun W. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. Talanta, 2014, 128:373-378.
  • Liu S, Xing X, Yu J, Lian W, Li J, Cui M, Huang J. A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film fordopamine determination. Biosens. Bioelectron., 2012, 36(1):186-191.
  • Qian T, Yu C, Wu S, Shen J. In situ polymerization of highly dispersed polypyrrole on reduced graphite oxide for dopaminedetection. Biosens. Bioelectron., 2013, 50:157-160.
  • Qian T, Wu S, Shen J.Facilely prepared polypyrrole-reduced graphite oxide core-shell microspheres with high dispersibility for electrochemical detection of dopamine. Chem. Commun., 2013, 49(41):4610-4612.
  • Si P, Chen H, Kannan P, Kim DH. Selective and sensitive determination of dopamine by composites of polypyrrole and graphenemodified electrodes. Analyst, 2011, 136(24):5134-5138.
  • Mao H, Liang J, Ji C, Zhang H, Pei Q, Zhang Y, Zhang Y, Hisaeda Y, Song XM. Poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemically detecting dopamine at low concentration. Mater. Sci. Eng. C: Mater. Biol. Appl., 2016, 65:143-150.
  • Wu L, Feng L, Ren J, Qu X. Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens. Bioelectron., 2012, 34(1):57-62.
  • Sakthinathan S, Lee HF, Chen SM, Tamizhdurai P. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite. J. Coll. Interf. Sci., 2016, 468:120-127.
  • Yan X, Gu Y, Li C, Tang L, Zheng B, Li Y, Zhang Z, Yang M. Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine. Biosens. Bioelectron., 2016, 77:1032-1038.
  • Niu X, Yang W, Guo H, Ren J, Yang F, Gao J. A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode. Talanta, 2012, 99:984-988.
  • Weng X, Cao Q, Liang L, Chen J, You C, Ruan Y, Lin H, Wu L. Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films. Talanta, 2013, 117:359-365.
  • Ku S, Palanisamy S, Chen SM. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode. J. Coll. Interf. Sci., 2013, 411:182-186.
  • Zhang W, Zheng J, Shi J, Lin Z, Huang Q, Zhang H, Wei C, Chen J, Hu S, Hao A. Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine. Anal. Chim. Acta., 2015, 853:285-290.
  • Liu CY, Liu ZY, Peng R, Zhong ZC. Quasireversible Process of Dopamine on Copper-Nickel Hydroxide Composite/Nitrogen Doped Graphene/Nafion Modified GCE and Its Electrochemical Application. J. Anal. Meth. Chem., 2014, 2014:724538.
  • Ly SY, Park, Won D. Diagnosis of Dopamine in Brain Neuro Cell Using a Nafion-immobilized Carbon Electrode. Med. Chem., 2012, Sep 10. [Preprint].
  • Yang L, Huang N, Lu Q, Liu M, Li H, Zhang Y, Yao S. A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid,dopamine, uric acid and acetaminophen based on a ferrocene derivative functional Au NPs/carbon dots nanocomposite and graphene. Anal. Chim. Acta., 2016, 903:69-80.
  • Wang P, Xia M, Liang O, Sun K, Cipriano AF, Schroeder T, Liu H, Xie YH. Label-Free SERS Selective Detection of Dopamine and Serotonin Using Graphene-Au Nanopyramid Heterostructure. Anal. Chem., 2015, 87(20):10255-10261.
  • Li C, Zhao J, Yan X, Gu Y, Liu W, Tang L, Zheng B, Li Y, Chen R, Zhang Z. Tremella-like graphene-Au composites used for amperometric determination of dopamine. Analyst, 2015, 140(6):1913-1920.
  • Yan Y, Liu Q, Wang K, Jiang L, Yang X, Qian J, Dong X, Qiu B. Enhanced peroxydisulfate electrochemiluminescence for dopamine biosensing based on Au nanoparticle decorated reduced graphene oxide. Analyst, 2013, 138(23):7101-7106.
  • Chen X, Zhang G, Shi L, Pan S, Liu W, Pan H. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Mater. Sci. Eng. C: Mater. Biol. Appl., 2016, 65:80-89.
  • He P, Wang W, Du L, Dong F, Deng Y, Zhang T. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid. Anal. Chim. Acta., 2012, 739:25-30.
  • Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta, 2016, 146:114-121.
  • Liu CY, Liu ZY, Peng R, Zhong ZC. Quasireversible Process of Dopamine on Copper-Nickel Hydroxide Composite/Nitrogen DopedGraphene/Nafion Modified GCE and Its Electrochemical Application. J. Anal. Meth. Chem., 2014, 2014:724538.
  • Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, Xia XH. Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron., 2012, 34(1):125-131.
  • Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH. Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens. Bioelectron., 2016, 81:259-267.
  • Madhu R, Veeramani V, Chen SM, Manikandan A, Lo AY, Chueh YL. Honeycomb-like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications. ACS Appl. Mat. Interf., 2015, 7(29):15812-15820.
  • Mousty C, Leroux F. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor. Rec. Pat. Nanotech., 2012, 6(3):174-192.
  • Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mat. Interf., 2014, 6(3):2174-2184.
  • Must I, Johanson U, Kaasik F, Põldsalu I, Punning A, Aabloo A. Charging a supercapacitor-like laminate with ambient moisture: from a humidity sensor to an energy harvester. Phys. Chem. Chem. Phys., 2013, 15(24):9605-9614.
  • Meng JP, Gong Y, Lin Q, Zhang MM, Zhang P, Shi HF, Lin JH. Metal-organic frameworks based on rigid ligands as separator membranes in supercapacitor. Dalton Trans., 2015, 44(12):5407-5416.
  • Sales BB, Saakes M, Post JW, Buisman CJ, Biesheuvel PM, Hamelers HV. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Envir. Sci. Technol., 2010, 44(14):5661-5665.
  • Kiani MJ, Ahmadi MT, Karimi Feiz Abadi H, Rahmani M, Hashim A, Che Harun FK. Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett., 2013, 8(1):173-1-173-9.
  • Johnson RN, Hanna GR. Membrane model: a single transistor analog of excitable membrane. J. Theor. Biol., 1969, 22(3):401-411.
  • Sibbald A, Covington AK, Carter RF. Simultaneous on-line measurement of blood K+, Ca2+, Na+, and pH with a four-function ChemFET integrated-circuit sensor. Clin. Chem., 1984, 30(1):135-137.
  • Sibbald A, Covington AK, Carter RF. Online patient-monitoring system for the simultaneous analysis of blood K+, Ca2+, Na+ and pH using a quadruple-function ChemFET integrated-circuit sensor. Med. Biol. Eng. Comput., 1985, 23(4):329-338.
  • Costa J, Fernandes M, Vieira M, Lavareda G, Karmali A. Membrane selectivity versus sensor response in hydrogenated amorphous silicon ChemFETs using a semi-empirical model. J. Nanosci. Nanotechnol., 2011, 11(10):8844-8847.
  • Sun G, Senapati S, Chang HC. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform. Lab Chip., 2016, 16(7):1171-1177.
  • Mo Y, Wan Y, Chau A, Huang F. Graphene/Ionic liquid composite films and ion exchange. Sci. Rep., 2014, 4:5466-1-5466-8.
  • Chen G, Zhai S, Zhai Y, Zhang K, Yue Q, Wang L, Zhao J, Wang H, Liu J, Jia J. Preparation of sulfonic-functionalized graphene oxide as ion-exchange material and its application into electrochemiluminescence analysis. Biosens. Bioelectron., 2011, 26(7):3136-3141.
  • Zhang S, Shao Y, Liu J, Aksay IA, Lin Y. Graphene-polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing ClO4– from wastewater. ACS Appl. Mat. Interf., 2011, 3(9):3633-3637.
  • Park JW, Park SJ, Kwon OS, Lee C, Jang J. Polypyrrole nanotube embedded reduced graphene oxide transducer for field-effect transistor-type H2O2 biosensor. Anal. Chem., 2014, 86(3):1822-1828.
  • Kwon OS, Park SJ, Hong JY, Han AR, Lee JS, Lee JS, Oh JH, Jang J. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano, 2012, 6(2):1486-1493.
  • Farid S, Meshik X, Choi M, Mukherjee S, Lan Y, Parikh D, Poduri S, Baterdene U, Huang CE, Wang YY, Burke P, Dutta M, Stroscio MA. Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens. Bioelectron., 2015, 71:294-299.
  • Park JW, Park SJ, Kwon OS, Lee C, Jang J. High-performance Hg2+ FET-type sensors based on reduced graphene oxide-polyfuran nanohybrids. Analyst, 2014, 139(16):3852-3855.
  • Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett., 2012, 12(10):5082-5090.
  • Worley BC, Kim S, Park S, Rossky PJ, Akinwande D, Dodabalapur A. Dramatic vapor-phase modulation of the characteristics of graphene field-effect transistors. Phys. Chem. Chem. Phys., 2015, 17(28):18426-18430.
  • Min M, Seo S, Lee J, Lee SM, Hwang E, Lee H. Changes in major charge transport by molecular spatial orientation in graphene channel field effect transistors. Chem. Commun., 2013, 49(56):6289-6291.
  • Strejčková A, Staničová J, Jancura D, Miškovský P, Bánó G. Spatial orientation and electric-field-driven transport of hypericin inside of bilayer lipid membranes. J. Phys. Chem. B., 2013, 117(5):1280-1286.
  • Shen J, Liu G, Huang K, Jin W, Lee KR, Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew. Chem. Int. Ed. Engl., 2015, 54(2):578-582.
  • Chen XC, Wei W, Lv W, Su FY, He YB, Li B, Kang F, Yang QH. A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chem. Commun., 2012, 48(47):5904-5906.
  • Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H. Selective ion penetration of graphene oxide membranes. ACS Nano, 2013, 7(1):428-437.
  • Sint K, Wang B, Král P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc., 2008, 130(49):16448-16449.
  • Boukhvalov DW, Virojanadara C. Penetration of alkali atoms throughout a graphene membrane: theoretical modeling. Nanoscale, 2012, 4(5):1749-1753.
  • He Z, Zhou J, Lu X, Corry B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano, 2013, 7(11):10148-10157.
  • Grahame-Smith DG, Wang H. Comparison of the actions of lithium, rubidium, and caesium on rat brain 5-HT function: pharmacological implications of ion channel function. Clin. Neuropharmacol., 1992, 15(Suppl. 1):614A-615A.
  • Boccaccio A, Conti F, Olivera BM, Terlau H. Binding of kappa-conotoxin PVIIA to Shaker K+ channels reveals different K+ and Rb+ occupancies within the ion channel pore. J. Gen. Physiol., 2004, 124(1):71-81.
  • Mao G, Winokur MJ, Karasz FE. Dual alkali-metal-ion channel structures in poly(p-phenylenevinylene). Phys. Rev. B: Cond. Matt., 1996, 53(2):R463-R467.
  • Miller C, Stahl N, Barrol M. A thermodynamic analysis of monovalent cation permeation through a K+-selective ion channel. Neuron, 1988, 1(2):159-164.
  • Billes F, Mohammed-Ziegler I, Mikosch H. Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model. J. Mol. Model., 2012, 18(8):3627-3637.
  • Hilder TA, Gordon D, Chung SH. Synthetic chloride-selective carbon nanotubes examined by using molecular and stochastic dynamics. Biophys. J., 2010, 99(6):1734-1742.
  • Middleton RE, Pheasant DJ, Miller C. Homodimeric architecture of a ClC-type chloride ion channel. Nature, 1996, 383(6598):337-340.
  • Li Y, Yeo GF, Milne RK, Madsen BW, Edeson RO. Burst properties of a supergated double-barrelled chloride ion channel. Math. Biosci., 2000, 166(1):23-44.
  • Franco A, Winegar BD, Lansman JB. Open channel block by gadolinium ion of the stretch-inactivated ion channel in mdx myotubes. Biophys. J., 1991, 59(6):1164-1170.
  • Wang K, McIlvain B, Tseng E, Kowal D, Jow F, Shen R, Zhang H, Shan QJ, He L, Chen D, Lu Q, Dunlop J. Validation of an atomic absorption rubidium ion efflux assay for KCNQ/M-channels using the ion Channel Reader 8000. Assay Drug Dev. Technol., 2004, 2(5):525-534.
  • Massobrio G, Massobrio P, Martinoia S. Modeling the neuron-carbon nanotube-ISFET junction to investigate the electrophysiological neuronal activity. Nano Lett., 2008, 8(12):4433-4440.
  • Martinoia S, Massobrio P. ISFET-neuron junction: circuit models and extracellular signal simulations. Biosens. Bioelectron., 2004, 19(11):1487-1496.
  • Li Z, Wang C, Tian L, Bai J, Yao H, Zhao Y, Zhang X, Cao S, Qi W, Wang S, Shi K, Xu Y, Mingliang Z, Liu B, Qiu H, Liu J, Wu W, Wang X, Wenzhen A. An embryo of protocells: The capsule of graphene with selective ion channels. Sci. Rep., 2015, 5:10258-1-10258-14.
  • Li Z, Wang C, Tian L, Bai J, Yao H, Zhao Y, Zhang X, Cao S, Qi W, Wang S, Shi K, Xu Y, Mingliang Z, Liu B, Qiu H, Liu J, Wu W, Wang X, Wenzhen A. Corrigendum: An embryo of protocells: The capsule of graphene with selective ion channels. Sci. Rep., 2015, 5:12386.
  • Stillwell W. Facilitated diffusion as a method for selective accumulation of materials from the primordial oceans by a lipid-vesicle protocell. Orig. Life., 1980, 10(3):277-292.
  • Liu J, Stace-Naughton A, Jiang X, Brinker CJ. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J. Am. Chem. Soc., 2009, 131(4):1354-1355.
  • Walde P. Building artificial cells and protocell models: experimental approaches with lipid vesicles. Bioessays, 2010, 32(4):296-303.
  • Li M, Huang X, Tang TY, Mann S. Synthetic cellularity based on non-lipid micro-compartments and protocell models. Curr. Opin. Chem. Biol., 2014, 22:1-11.
  • Koga S, Williams DS, Perriman AW, Mann S. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem., 2011, 3(9):720-724.
  • Li M, Harbron RL, Weaver JV, Binks BP, Mann S. Electrostatically gated membrane permeability in inorganic protocells. Nat. Chem., 2013, 5(6):529-536.
  • Cooper GJ, Kitson PJ, Winter R, Zagnoni M, Long DL, Cronin L. Modular redox-active inorganic chemical cells: iCHELLs. Angew. Chem. Int. Ed. Engl., 2011, 50(44):10373-10376.
  • Kumar RK, Li M, Olof SN, Patil AJ, Mann S. Artificial cytoskeletal structures within enzymatically active bio-inorganic protocells. Small, 2013, 9(3):357-362.
  • Gupta VK. Emergence of photoautotrophic minimal protocell-like supramolecular assemblies, "Jeewanu" synthesied photo chemically in an irradiated sterilised aqueous mixture of some inorganic and organic substances. Orig. Life Evol. Biosph., 2014, 44(4):351-355.
  • Kaur G, Rath G, Heer H, Goyal AK. Optimization of protocell of silica nanoparticles using 3² factorial designs. AAPS PharmSciTech., 2012, 13(1):167-173.
  • Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie RF, Chen YP, Král P, Salehi-Khojin A. Chemical sensing with switchable transport channels in grapheme grain boundaries. Nat. Commun., 2014, 5:4911.
  • Rickhaus P, Liu MH, Makk P, Maurand R, Hess S, Zihlmann S, Weiss M, Richter K, Schönenberger C. Guiding of Electrons in a Few-Mode Ballistic Graphene Channel. Nano Lett., 2015, 15(9):5819–5825.
  • Cantele G, Lee YS, Ninno D, Marzari N. Spin channels in functionalized graphene nanoribbons. Nano Lett., 2009, 9(10):3425-3429.
  • Archer SJ, Ellena JF, Cafiso DS. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides. Biophys. J., 1991, 60(2):389-398.
  • Perozo E, Cuello LG, Cortes DM, Liu YS, Sompornpisut P. EPR approaches to ion channel structure and function. Novartis Found Symp., 2002, 245:146-168.
  • Holt SA, Le Brun AP, Majkrzak CF, McGillivray DJ, Heinrich F, Lösche M, Lakey JH. An ion-channel-containing model membrane: structural determination by magnetic contrast neutron reflectometry. Soft Matter, 2009, 5(13):2576-2586.
  • Endeward B, Butterwick JA, MacKinnon R, Prisner TF. Pulsed electron-electron double-resonance determination of spin-label distances and orientations on the tetrameric potassium ion channel KcsA. J. Am. Chem. Soc., 2009, 131(42):15246-15250.
  • Dellisanti CD, Ghosh B, Hanson SM, Raspanti JM, Grant VA, Diarra GM, Schuh AM, Satyshur K, Klug CS, Czajkowski C. Site-directed spin labeling reveals pentameric ligand-gated ion channel gating motions. PLoS Biol., 2013, 11(11):e1001714, 1-14.
  • Mirsaidov U, Mokkapati VR, Bhattacharya D, Andersen H, Bosman M, Özyilmaz B, Matsudaira P. Scrolling graphene into nanofluidic channels. Lab Chip, 2013, 13(15):2874-2878.
  • Montenegro J, Ghadiri MR, Granja JR. Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res., 2013, 46(12):2955-2965.
  • Mayer M, Semetey V, Gitlin I, Yang J, Whitesides GM. Using ion channel-forming peptides to quantify protein-ligand interactions. J. Am. Chem. Soc., 2008, 130(4):1453-1465.
  • Sánchez-Quesada J, Isler MP, Ghadiri MR. Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies. J. Am. Chem. Soc., 2002, 124(34):10004-10005.
  • Ichikawa T, Yoshio M, Hamasaki A, Mukai T, Ohno H, Kato T. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J. Am. Chem. Soc., 2007, 129(35):10662-10663.
  • Cazacu A, Tong C, van der Lee A, Fyles TM, Barboiu M. Columnar self-assembled ureido crown ethers: an example of ion-channel organization in lipid bilayers. J. Am. Chem. Soc., 2006, 128(29):9541-9548.
  • Nyitrai G, Keszthelyi T, Bóta A, Simon A, Tőke O, Horváth G, Pál I, Kardos J, Héja L. Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer. Biochim. Biophys. Acta., 2013, 1828(8):1873-1880.
  • Abhilash TS, De Alba R, Zhelev N, Craighead HG, Parpia JM. Transfer printing of CVD graphene FETs on patterned substrates. Nanoscale, 2015, 7(33):14109-14113.
  • Ping J, Wang Y, Ying Y, Wu J. Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal. Chem., 2012, 84(7):3473-3479.
  • Lukas M, Meded V, Vijayaraghavan A, Song L, Ajayan PM, Fink K, Wenzel W, Krupke R. Catalytic subsurface etching of nanoscale channels in graphite. Nat. Commun., 2013; 4:1379.
  • Choi BS, Kim SM, Gong J, Lee YW, Kang SW, Lee HS, Park JY, Han SW. One-pot self-templating synthesis of Pt hollow nanostructures and their catalytic properties for CO oxidation. Chemistry, 2014, 20(37):11669-11674.
  • Yang F, Zhou S, Wang H, Long S, Liu X, Kong Y. A metal-assisted templating route (S0M+I-) for fabricating thin-layer CoO covered on the channel of nanospherical-HMS with improved catalytic properties. Dalton Trans., 2016, 45(15):6371-6382.
  • Li Y, Guijarro N, Zhang X, Prévot MS, Jeanbourquin XA, Sivula K, Chen H, Li Y. Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies. ACS Appl. Mat. Interf., 2015, 7(31):16999-17007.
  • Martin JD, Keary CL, Thornton TA, Novotnak MP, Knutson JW, Folmer JC. Metallotropic liquid crystals formed by surfactant templating of molten metal halides. Nat. Mater., 2006, 5(4):271-275.
  • Moon GH, Shin Y, Choi D, Arey BW, Exarhos GJ, Wang C, Choi W, Liu J. Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures. Nanoscale, 2013, 5(14):6291-6296.
  • Chaloin L, Méry J, Van Mau N, Divita G, Heitz F. Synthesis of a template-associated peptide designed as a transmembrane ion channel former. J. Pept. Sci., 1999, 5(9):381-391.
  • Wang Y, Ma S, Su Y, Han X. Palladium nanotubes formed by lipid tubule templating and their application in ethanol electrocatalysis. Chemistry, 2015, 21(16):6084-6089.
  • Inesi G, Kirtley ME. Coupling of catalytic and channel function in the Ca2+ transport ATPase. J. Membr. Biol., 1990, 116(1):1-8.
  • Hsu CM, Rosen BP. Characterization of the catalytic subunit of an anion pump. J. Biol. Chem., 1989, 264(29):17349-17354.
  • Ramjeesingh M, Li C, Garami E, Huan LJ, Galley K, Wang Y, Bear CE. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator). Biochemistry, 1999, 38(5):1463-1468.
  • Csanády L, Vergani P, Gadsby DC. Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Proc. Nat. Acad. Sci. USA, 2010, 107(3):1241-1246.
  • Bienengraeber M, Alekseev AE, Abraham MR, Carrasco AJ, Moreau C, Vivaudou M, Dzeja PP, Terzic A. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. FASEB J., 2000, 14(13):1943-1952.
  • Park S, Lim BB, Perez-Terzic C, Mer G, Terzic A. Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. J. Proteome Res., 2008, 7(4):1721-1728.
  • Behera RK, Theil EC. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates. Proc. Nat. Acad. Sci. USA, 2014, 111(22):7925-7930.
  • Theil EC. Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. Curr. Opin. Chem. Biol., 2011, 15(2):304-311.
  • Sakai N, Sordé N, Matile S. Synthetic catalytic pores. J. Am. Chem. Soc., 2003, 125(26):7776-7777.
  • Sharma V, Wikström M. The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase. Biochim. Biophys. Acta., 2016, 1857(8):1111-1115.
  • Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomès R. Catalysis of Na+ permeation in the bacterial sodium channel Na(V)Ab. Proc. Nat. Acad. Sci. USA, 2013, 110(28):11331-11336.
  • Lim C, Dudev T. Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters. Met. Ions Life Sci., 2016, 16:325-347.
  • Zacharias N, Dougherty DA. Cation-pi interactions in ligand recognition and catalysis. Trends Pharmacol Sci., 2002, 23(6):281-287.
  • Okamura Y. Lipids: PI couples voltage to catalysis. Nat. Chem. Biol., 2010, 6(5):315-316.
  • Kohout SC, Bell SC, Liu L, Xu Q, Minor DL, Isacoff EY. Electrochemical coupling in the voltage-dependent phosphatase Ci-VSP. Nat. Chem. Biol., 2010, 6(5):369-375.
  • Dhindwal S, Priyadarshini P, Patil DN, Tapas S, Kumar P, Tomar S, Kumar P. Ligand-bound structures of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis reveal a water channel connecting to the active site for the second step of catalysis. Acta Crystallogr. D: Biol. Crystallogr., 2015, 71(2):239-255.
  • Marti J, Nagy G, Gordillo MC, Guàrdia E. Molecular simulation of liquid water confined inside graphite channels: thermodynamics and structural properties. J. Chem. Phys., 2006, 124(9):94703-1-94703-7.
  • Thekkethala JF, Sathian SP. Thermal transpiration through single walled carbon nanotubes and graphene channels. J. Chem. Phys., 2013, 139(17):174712-1-174712-9.
  • Leung SS, Sindhikara D, Jacobson MP. Simple Predictive Models of Passive Membrane Permeability Incorporating Size-Dependent Membrane-Water Partition. J. Chem. Inf. Model., 2016, 56(5):924-929.
  • Kreida S, Törnroth-Horsefield S. Structural insights into aquaporin selectivity and regulation. Curr. Opin. Struct. Biol., 2015, 33:126-134.
  • Jang M, Trung TQ, Jung JH, Kim BY, Lee NE. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer. Phys. Chem. Chem. Phys., 2014, 16(9):4098-4105.
  • Ramesh P, Itkis ME, Bekyarova E, Wang F, Niyogi S, Chi X, Berger C, de Heer W, Haddon RC. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode. J. Am. Chem. Soc., 2010, 132(41):14429-14436.
  • Li SL, Miyazaki H, Hiura H, Liu C, Tsukagoshi K. Enhanced logic performance with semiconducting bilayer graphene channels. ACS Nano, 2011, 5(1):500-506.


Полнотекстовая электронная версия статьи – на вебсайтах http://elibrary.ru и http://rensit.ru/vypuski/article/190/8(2)154-170.pdf