Том 6, №1, 2014
РусскийEnglish

РЕЛЯТИВИСТСКАЯ КВАНТОВАЯ МЕХАНИКА



ВОСЕМЬДЕСЯТ ЛЕТ ПАРАДОКСУ КЛЕЙНА
Андреев А. В.

Московский государственный университет им. М.В. Ломоносова, физический факультет, http://www.phys.msu.ru,
1/7, Ленинские горы, 119991 Москва, Российская Федерация
+7 495 939 3092, av_andreev@phys.msu.ru


Парадокс Клейна интерпретируется в рамках теорий, основанных на использовании релятивистских волновых уравнений материального поля, включающих вторую производную по времени. Определены условия необходимые для экспериментального наблюдения указанного явления.

Ключевые слова: уравнение Клейна-Гордона-Фока, квартионное уравнение, отрицательная вероятность, зеркальные частицы, темная материя, скалярные и спинорные поля, квартионы

PACS: 03.65.-w

Библиография – 92 ссылки
Поступила в редакцию 15.06.2010

РЭНСИТ, 2010, 2(1-2):3-43

ЛИТЕРАТУРА
  • Dombey N, Calogeracos A. Seventy years of the Klein paradox. Phys.Rep., 1999, 315:41-58.
  • Klein O. Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac. Z.Phys., 1929, 53:157-165.
  • Dirac P.A.M. The quantum theory of the electron. Proc.Roy.Soc. A, 1928, 117:610-624.
  • Nefediev AV, Simonov YuA. Chiral symmetry breaking and the Lorentz nature of confinement. Phys. Rev. D76, 2007, 074014.
  • De Castro AS, Alberto P, Lisboa R, Malheiro M. Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: The case of the relativistic harmonic oscillator. Phys. Rev. C73, 2006, 054309.
  • Kalashnikova YuS, Nefediev AV, Ribeiro JE. Confinement and parity doubling in heavy-light mesons. Phys. Rev. D72, 2005, 034020.
  • Altshuler E, Silverman D. Predictability of charmonium levels from a range of good fits. Phys. Rev. D48, 1993, 2160.
  • Tiemeijer PC, Tjon JA. Effects of negative energy components in the constituent quark model. Phys. Rev. C48, 1993, 896-901.
  • Juzeliūnas G, Ruseckas J, Lindberg M, Santos L, Öhberg P. Quasirelativistic behavior of cold atoms in light fields. Phys. Rev. A77, 2008, 011802.
  • Lunardi José T, Manzoni Luiz A. Relativistic tunneling through two successive barriers. Phys. Rev. A76, 2007, 042111.
  • Lamata L, León J, Schätz T, Solano E. Robust Dirac equation and quantum relativistic effects in a single trapped ion. Phys. Rev. Lett., 2007, 98:253005.
  • Cardoso V, Dias ÓJ, Lemos JP, Yoshida Sh. Highly damped quasinormal modes of Kerr black holes: a complete numerical investigation. Phys. Rev. D70, 2004, 044039.
  • R-G Cai, R-K Su, PKN Yu. Nonequilibrium thermodynamic fluctuations of charged dilaton black holes. Phys. Rev. D48, 1993, 3473-3477.
  • Bhattacharjee S, Sengupta K. Tunneling conductance of graphene NIS junctions. Phys. Rev. Lett., 2006, 97:217001.
  • Peres NMR, Castro Neto AH, Guinea F. Dirac fermion confinement in grapheme. Phys. Rev. B73, 2006, 241403.
  • Katsnelson MI, Novoselov KS. Graphene: new bridge between condensed matter physics and quantum electrodynamics. Sol.State Comm., 2007, 143:3-13.
  • San-Jose P, Prada E, Golubev DS. Universal scaling of current fluctuations in disordered grapheme. Phys. Rev. B76, 2007, 195445.
  • Trushin M, Schliemann J. Minimum electrical and thermal conductivity of graphene: a quasiclassical approach. Phys. Rev. Lett., 2007, 99:216602.
  • Stauber T, Peres NM, Guinea F. Electronic transport in graphene: A semiclassical approach including midgap states. Phys. Rev. B76, 2007, 205423.
  • Bhattacharjee S, Maiti M, Sengupta K. Theory of tunneling conductance of graphene normal metal-insulator-superconductor junctions. Phys. Rev. B76, 2007, 184514.
  • Goswami P, Jia X, Chakravarty S. Quantum Hall plateau transition in the lowest Landau level of disordered graphene. Phys. Rev. B76, 2007, 205408.
  • Naumis GG. Internal mobility edge in doped graphene: Frustration in a renormalized lattice. Phys. Rev. B76, 2007, 153403.
  • Linder J, Sudbø A. Dirac fermions and conductance oscillations in s- and d-wave superconductor-graphene junctions. Phys. Rev. Lett., 2007, 99:147001.
  • Melikyan A, Tešanović Z. Dirac-Bogoliubov-deGennes quasiparticles in a vortex lattice. Phys. Rev. B76, 2007, 094509.
  • Bai C, Zhang X. Klein paradox and resonant tunneling in a graphene superlattice. Phys. Rev. B76, 2007, 075430.
  • Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, van den Brink J. Substrate-induced bandgap in graphene on hexagonal boron nitride. Phys. Rev. B76, 2007, 073103.
  • Maiti M, Sengupta K. Josephson effect in graphene superconductor/barrier/ superconductor junctions: Oscillatory behavior of the Josephson current. Phys. Rev. B76, 2007, 054513.
  • Fistul MV, Efetov KB. Electromagnetic-field-induced suppression of transport through n-p junctions in graphene. Phys. Rev. Lett., 2007, 98:256803.
  • Huard B, Sulpizio JA, Stander N, Todd K, Yang B, Goldhaber-Gordon D. Transport measurements across a tunable potential barrier in grapheme. Phys. Rev. Lett., 2007, 98:236803.
  • Chen H-Y, Apalkov V, Chakraborty T. Fock-Darwin states of Dirac electrons in graphene-based artificial atoms. Phys. Rev. Lett., 2007, 98:186803.
  • Zheng H, Wang ZF, Luo T, Shi QW, Chen J. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B 75, 2007, 165414.
  • Khveshchenko DV. Composite Dirac fermions in grapheme. Phys. Rev. B 75, 2007, 153405.
  • Milton Pereira J, Peeters FM, Vasilopoulos P. Magnetic interface states in graphene-based quantum wires. Phys. Rev. B 75, 2007, 125433.
  • Matulis A, Peeters FM. Appearance of enhanced Weiss oscillations in graphene: Theory. Phys. Rev. B 75, 2007, 125429.
  • Wehling TO, Balatsky AV, Katsnelson MI, Lichtenstein AI, Scharnberg K, Wiesendanger R. Local electronic signatures of impurity states in grapheme. Phys. Rev. B 75, 2007, 125425.
  • Cresti A, Grosso G, Pastori Parravicini G. Electronic states and magnetotransport in unipolar and bipolar graphene ribbons. Physica E, 2008, 40:1712.
  • Tang C, Zheng Y, Li G, Li L. Nonequivalence of the step-like potentials between the tight-binding model and the Dirac equation description used in graphene study. Sol.State Comm., 2008, 148:455-458.
  • Gupta KS, Sen S. Bound states in gapped graphene with impurities: Effective low-energy description of short-range interactions. Phys. Rev. B 78, 2008, 205429.
  • Abergel DSL, Apalkov VM, Chakraborty T. Interplay between valley polarization and electron-electron interaction in a graphene ring. Phys. Rev. B 78, 2008, 193405.
  • Athanassiou EK, Krumeich F, Grass RN, Stark WJ. Advanced piezoresistance of extended metal/insulator core shell nanoparticle assemblies. Phys. Rev. Lett., 2008, 101:166804.
  • Beenakker CW. Colloquium: Andreev reflection and Klein tunneling in grapheme. Rev.Mod.Phys., 2008, 80:1337.
  • Syzranov SV, Fistul MV, Efetov KB. Effect of radiation on transport in grapheme. Phys. Rev. B78, 2008, 045407.
  • Pereg-Barnea T, MacDonald AH. Chiral quasiparticle local density of states maps in grapheme. Phys. Rev. B 78, 2008, 014201.
  • Carmier P, Ullmo D. Berry phase in graphene: Semiclassical perspective. Phys. Rev. B 77, 2008, 245413.
  • Zhang ZZ, Chang K, Peeters FM. Tuning of energy levels and optical properties of graphene quantum dots. Phys. Rev. B77, 2008, 235411.
  • Misumi T, Shizuya K. Electromagnetic response and pseudo-zero-mode Landau levels of bilayer graphene in a magnetic field. Phys. Rev. B77, 2008, 195423.
  • Tahir M, Sabeeh K. Quantum transport of Dirac electrons in graphene in the presence of a spatially modulated magnetic field. Phys. Rev. B77, 2008, 195421.
  • Pachos JK, Stone M, Temme K. Graphene with geometrically induced vorticity. Phys. Rev. Lett., 2008, 100:156806.
  • Barbier M, Peeters FM, Vasilopoulos P, Pereira JM. Dirac and Klein-Gordon particles in one-dimensional periodic potentials. Phys. Rev. B77, 2008, 115446.
  • Matulis A, Peeters FM. Quasibound states of quantum dots in single and bilayer grapheme. Phys. Rev. B77, 2008, 115423.
  • Pereira VM, Lopes dos Santos JM, Castro Neto AH. Modeling disorder in grapheme. Phys. Rev. B77, 2008, 115109.
  • Plochocka P, Faugeras C, Orlita M, Sadowski ML, Martinez G, Potemski M, Goerbig MO, Fuchs J-N, Berger C, de Heer WA. High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy. Phys. Rev. Lett., 2008, 100:087401.
  • Zanella I, Guerini S, Fagan SB, Mendes Filho J, Souza Filho AG. Chemical doping induced gap opening and spin polarization in grapheme. Phys. Rev. B77, 2008, 073404.
  • Linder J, Sudbø A. Tunneling conductance in s- and d-wave superconductor-graphene junctions: extended blonder-Tinkham-Klapwijk formalism. Phys. Rev. B77, 2008, 064507.
  • Isacsson A, Jonsson LM, Kinaret JM, Jonson M. Electronic superlattices in corrugated grapheme. Phys. Rev. B77, 2008, 035423.
  • Firsova NE, Ktitorov SA, Pogorelov PA. Bound electron states in the monolayer gapped graphene with the short-range impurities. Phys.Lett. A, 2009, 373:525-528.
  • McClure JW. Diamagnetism of graphite. Phys. Rev., 1956, 104:666–671.
  • Gusynin VP, Sharapov SG, Carbotte JP. Sum rules for the optical and Hall conductivity in grapheme. J. Mod. Phys. B21, 2007, 4611-4658.
  • Calogeracos A, Dombey N. Klein tunneling and the Klein paradox. J.Mod.Phys. A14, 1999, 631.
  • Sauter F. Über das Verhalten eines Electrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z.Phys. B69, 1931, 742-764.
  • Sauter F. Zum "Kleinshen Paradoxen". Z.Phys. B73, 1931, 547-562.
  • Paolo Christillin, Emilio d’Emilio. Role of the slope of realistic potential barriers in preventing relativistic tunneling in the Klein zone. Phys. Rev. A76, 2007, 042104.
  • Никишов АИ. Образование пар постоянным внешним полем. ЖЭТФ, 1969, 57:1210-1216.
  • Nikishov AI. Barrier scattering in field theory removal of Klein paradox. Nucl. Phys. B21, 1970, 346-358.
  • Никишов АИ, Ритус ВИ. Взаимодействие электронов и фотонов с очень сильным магнитным полем. УФН, 1970, 100:724.
  • Schwinger J. On gauge invariance and vacuum polarization. Phys. Rev., 1951, 82:664.
  • Гриб АА, Мамаев СГ, Мостепаненко ВМ. Квантовые эффекты в интенсивных внешних полях. М., Атомиздат, 1980.
  • Greiner W, Muller B, Rafelski J. Quantum Electrodynamics of Strong Fields. Berlin-Heidelberg-New York-Tokyo, Springer-Verlag, 1985.
  • Manogue CA. The Klein paradox and superradiance. Annals of Physics, 1988, 181:261-283.
  • Maier TJ, Dreizler RM, Ixaru LG. Nonperturbative pair production by a Dirac square well with time-dependent depth. Phys. Rev. A48, 1993, 2031-2039.
  • Krekora P, Su Q, Grobe R. Transitions into the negative-energy Dirac continuum. Phys. Rev. A70, 2004, 054101.
  • Krekora P, Cooley K, Su Q, Grobe R. Creation dynamics of bound states in supercritical fields. Phys. Rev. Lett., 2005, 95:070403.
  • Krekora P, Su Q, Grobe R. Klein paradox with spin-resolved electrons and positrons. Phys. Rev. A72, 2005, 064103.
  • Krekora P, Su Q, Grobe R. Interpretational difficulties in quantum field theory. Phys. Rev. A73, 2006, 022114.
  • Kim SP, Page DN. Schwinger pair production in electric and magnetic fields. Phys. Rev. D73, 2006, 065020.
  • Gerry CC, Su Q, Grobe R. Timing of pair-production in time-dependent force fields. Phys. Rev. A74, 2006, 044103.
  • De Leo S, Rotelli PP. Barrier paradox in the Klein zone. Phys. Rev. A73, 2006, 042107.
  • Lamb KD, Gerry CC, Su Q, Grobe R. Unitary and nonunitary approaches in quantum field theory. Phys. Rev. A75, 2007, 013425.
  • Giachetti R, Sorace E. States of the Dirac equation in confining potentials. Phys. Rev. Lett., 2008, 101:190401.
  • Schützhold R, Gies H, Dunne G. Dynamically assisted Schwinger mechanism. Phys. Rev. Lett., 2008, 101:130404.
  • Côté R, Jobidon J-F, Fertig HA. Skyrme and Wigner crystals in grapheme. Phys. Rev. B78, 2008, 085309.
  • Cheng T, Bowen SP, Gerry CC, Su Q, Grobe R. Locality in the creation of electron-positron pairs. Phys. Rev. A77, 2008, 032106.
  • Вонсовский СВ, Свирский МС. Парадокс Клейна и дрожащее движение электрона в поле с постоянным скалярным потенциалом. УФН, 1993, 163:115-118.
  • Klein O. Quantum theory and five dimensional theory of relativity. Z.f.Phys., 1926, 37:895-906.
  • Fock V. Uber die invariante Form der wellen- und der bewegungs- gleichungen für einen geladenen massenpunkt. Z.f.Phys., 1926, 38:242-232.
  • Gordon W. Der comptoneffekt nach der Schrödingerschen theorie. Z.f.Phys., 1926, 40:117-133.
  • Андреев АВ. Теория частиц с полуцелым спином и сверхтонкая структура атомных уровней. М., Физматлит, 2003, 300 с.
  • Andreev AV. Atomic spectroscopy: introduction to the theory of hyperfine structure. N-Y, Springer, 2006.
  • Андреев АВ. Релятивистская квантовая механика: частицы и зеркальные частицы. М., Физматлит, 2009, 628 с.
  • Окунь ЛБ. Зеркальные частицы и зеркальная материя: 50 лет гипотез и поисков. УФН, 2007, 177:397-406.
  • Вайнберг С. Квантовая теория поля, т. 1. М., Физматлит, 2003, 648 с.
  • Mohr PJ, Taylor BN. CODATA recommended values of the fundamental physical constants: 1998. Rev.Mod.Phys., 2000, 72:351-495.


Полнотекстовая электронная версия статьи – на вебсайте http://elibrary.ru